Research Statement: Specifications for Information Security and
Systematic Program Analysis Derivations

Mounir Assaf

January 1, 2017

I am a young researcher trying to make impact on science, at my scale and within the scope
of my abilities and means. I pursue ideal goals, and rely on pragmatic tools.

I use programming languages, logic and mathematical reasoning in order to revolutionise
program analysis for software security. I rely on systematic design techniques, in order to devise
modern and novel foundations capable of supporting my long-term goals: designing practical
tools for end-to-end assurance of security requirements.

1 Systematic Design Techniques

I advocate systematic design techniques in my research to solve applied problems and provide
foundational and reusable advances. Beyond intrinsic beauty, they allow me to tackle challenges
and solve problems by completely separating creative processes from aspects involving “crunching
formulas” or “exhausting greek letters”.

My research involves leveraging my expertise of abstract interpretation and analytic combi-
natorics theories to design program analyses for security. Both theories require a specification,
whose design is the creative part. With that specification, textbook calculations take over for
systematic problem solving by relying on decades of well-documented insights.

Pedagogy is another perk of separating creativity and calculus; a good specification that
is well explained is often sufficient to comprehend both the problem and its solution, without
having to expose all details of calculations at first.

Sometimes, stepping into less explored corners of these textbook approaches requires deep
understanding, dedication and risk-taking so that, maybe, “the powerful play goes on, and you
may contribute a verse” — Walt Whitman. For abstract interpretation, I am contributing a
verse. I hope to do the same for analytic combinatorics. Meanwhile, I will take great care in
advocating its use in verification of asymptotic security properties [Assaf, 2015, Chapter 6].

1.1 Abstract Interpretation

Abstract interpretation is a theory for approximating the semantics of programs [Cousot and
Cousot, |1977]. Specifications for abstract interpretation include a model of program computations
and a mathematical object, called Galois connection, linking the computation model to a
property of interest, e.g., the range of program variables. The beauty of abstract interpretation
is leveraging mathematical properties of Galois connections to systematically transpose complex
and incomputable models of program executions into models that are simpler and tractable;
this has been used as a foundation to design static analyses among others; an impressive list of
topics covered by abstract interpretation appears at https://www.di.ens.fr/~cousot/AI/.
My first contribution to abstract interpretation is a contribution to the aforementioned list,
extending the range of topics covered by abstract interpretation to monitoring for information
security. |Assaf and Naumann| [2016] provides a foundation for using abstract interpretation to
design information flow monitors (see Section Information Security for more information).

https://www.di.ens.fr/~cousot/AI/

Research Project

My second contribution to abstract interpretation is putting to use a computation model, at
the level of sets of sets, to derive static analyses for security. |Assafl [2015, Chapter 5] and |Assaf
et al. [2016] 2017] are all dedicated to working out the idea — at different stages of maturity —
that specifications of some abstract interpreters should not be at the usual level of sets, but at
the level of sets of sets. This is crucial to specify some program analyses for security.

Future work. My work on monitors by abstract interpretation have not yet benefited from
the more general computation model, at the level of set of sets. This incremental result, to
which we hint at, in the conclusion of Assaf et al.| [2017], will have deeper impact on enforceable
security requirements.

So far, my work focuses on using collecting semantics, i.e. computation models, that are
described by denotational semantics in order to specify and derive analyses for security. Figuring
out the first derivation using collecting semantics — at the level of sets of sets — that is described
by small-step semantics will have far-reaching impact (small-step semantics defines the meaning
of programs through atomic discrete operations, in contrast to denotational semantics that
describes program computations as mathematical functions). My preliminary investigations are
promising; chaotic small-step iterations for describing computation models at the level of sets
of sets are possible, and their abstraction requires ascertaining some invariants to be explored
further. This work will eventually open up new possibilities for trading-off performance and
precision by designing complex fixpoint iteration strategies. In addition, since most scalable
static analysers implement small-step iterations strategies, this work will help understand the
targeted changes that are needed to implement these security analyses as modular standalone
abstract domains — avoiding invasive changes whenever a new security analysis is plugged in.

1.2 Analytic Combinatorics

Analytic combinatorics is a theory for predicting quantitative properties of large combinatorial
structures [Flajolet and Sedgewick, 2009]. Specifications for analytic combinatorics include
descriptions of how to construct combinatorial structures, as well as discrete functions com-
puting the properties of interest. In a similar way to abstract interpretation, one focuses on
describing how to construct combinatorial objects, e.g., words composed of two letters ‘a’ and ‘b’.
Analytic combinatorics beautifully transposes this specification into quantitative and asymptotic
information about combinatorial objects, by relying on mathematical tools from algebra (e.g,
formal power series) and analysis (e.g., analysis of functions over the complex plane).

Analytic combinatorics has applications in many fields, e.g., compilation and analysis of
algorithms. To the best of my knowledge, my dissertation [Assaf, 2015, Chapter 7] is the first to
apply this theory to the field of quantitative program analysis of information flow (see section
on Information Flow for more information).

In a nutshell, the observations attackers can make during a program’s execution determines
various quantitative information flow metrics. This work relies on abstract interpretation to
compute a specification of attackers’ observations. Analytic combinatorics takes over, in order to
use this specification of attackers’ observations and systematically find quantitative information
about the leakage of sensitive data.

Future work. My work relying on analytic combinatorics remains unpublished. It builds on
work that is just now being published, and should find its way to a paper describing a tightly
integrated vision [Assaf, 2015, Chapters 5, 6 and 7]: from designing security requirements, to
leveraging abstract interpretation and analytic combinatorics theories for the systematic design
of enforcement techniques.

Future work on improving these techniques pertains to Section Information Flow.

Research Project

Another promising area to explore would be the automatic computation of analytic combi-
natorics specifications, by relying on abstract interpretation. A tight integration of these two
theories, similarly to what is done in my dissertation, would greatly impact automated program
analysis, e.g. for estimating computational complexity, or usage of resources as diverse as time,
space, memory or threads. Such analyses will also find many applications in security. Beyond
information flow security, one such application may provide an alternative abstract interpretation-
based analysis for estimating the complexity of intrusion detection signatures [Goubault-Larrecq
and Lachancel [2016].

1.3 More Perspectives

Both abstract interpretation and analytic combinatorics theories may benefit greatly from
mechanisation, in order to anticipate the need for more assurance: not only do we need to prove
that programs are correct wrt. formal requirements, we also need to ensure that the tools used
to obtain these proofs are correct.

In abstract interpretation, ongoing efforts are exploring different techniques |[Jourdan et al.,
2015, (Cachera and Pichardie, |2010, Darais and Horn, [2016, Blazy et al 2016]. Adapting these
efforts to abstract interpretations at the level of sets of sets may target provable and certifiable
guarantees of security requirements.

Analytic combinatorics tools may also benefit from such a mechanisation effort, which may
first aim at providing user-friendly libraries by taking inspiration and building on work by [Boldo
et al.| [2015]. Eventually, this work would lead to certifiable proofs of quantitative properties of
programs.

My expertise in both fields, and my grit, will empower me in this research endeavour.

2 Information Security

Programs are buggy. More often than not, software bugs lead to attack vectors that can be
exploited by malicious entities for financial, political, or strategic advantage... Fortunately,
many bugs can be detected by tools that are nowadays evolving from niche markets — embedded
software in aeronautics, nuclear, or transportations — to general purpose software, e.g., open-
source software. These bugs are the ones related to properties such as safety, runtime errors,
buffer overflows, use-after-free or functional in-correctness. In sharp contrast, tools for detecting
leakage of sensitive information or data corruption — confidentiality and integrity violations —
are not up for the challenge. Not yet, at least! I do hope to change that.

Tools designed to enforce information security lack well-defined foundations that rely on the
semantics of programs. They are not precise enough, since they rely mostly on techniques coined
in seminal works in the field [Denning, [1976| Denning and Denning, 1977]. Most importantly,
possibilities for improving these tools are not well understood. In fact, naive attempts to
improve their precision by standard program analysis techniques break their correction — i.e.
some information leaks are not detected anymoreﬂ The problem lies in the design of enforcement
mechanisms for information flow control — the field aiming at tracking how information
propagates in programs to ensure they comply with a security policy.

Often, the design of these mechanisms relies on trial and error guided by mere intuitions,
instead of relying on principled approaches that would guide and enrich these intuitions. I, myself,
have designed enforcement mechanisms for information flow control by relying on mere intuition
in my early research career. I would define information flow control mechanisms, then would
attempt to prove they enforce a security policy; uncovering problems in the proof would lead me to
backtrack and redefine the mechanisms before attempting another proof of correctness. Convinced
that we ought to rely on much more principled and systematic techniques, I switched gears to

T explain an instance of this problem in my defense slides: http://massaf .net/files/PhdDefense_Assaf .pdf

http://massaf.net/files/PhdDefense_Assaf.pdf

Research Project

develop expertise and understanding of the framework of calculational abstract interpretation;
this theory provides a foundation for the systematic design of correct-by-construction program
analysis frameworks. Despite existing work relying on abstract interpretation for information flow
control, these works forego the use of the calculational approach relying on Galois connections,
missing the opportunity to harness the systematic and principled design approach of the
theory. The main insight that is missing in previous work relying on abstract interpretation
for information flow control, is a computation model of programs at the level of sets of sets.
This computation model at the level of sets of sets captures hyperproperties [Clarkson and
Schneider, 2010] — a formal characterisation of security requirements, in contrast to standard
computation models at the level of sets — aimed at properties. While previous work [Cousot
and Cousot} |1994] points out the existence of this computation model at the level of sets of sets,
to the best of my knowledge my work is the first to put it to use as a means to specify and
derive analyses for information flow control. This is a major contribution to my application
domain — information flow control. Yet, pushing further this idea will have impact on the theory
of abstract interpretation as well — see Section on Abstract Interpretation.

My recent research [Assaf, 2015, |Assaf et al) 2016, Assaf and Naumann| [2016, Assaf
et al., 2017 focuses on harnessing the systematic design techniques offered by the calculational
framework of abstract interpretation, to derive correct-by construction analyses for information
security. This “deep conceptual work” (in the words of a reviewer) provides analyses for
information flow with a semantics foundation. It shows off the benefits of a principled design
technique, by providing novel insights explaining the inner workings of information flow policies
and their enforcement mechanisms. As evidence of these benefits: I uncover various cases
where existing analyses techniques are not as precise as they could be [Assaf, 2015| Assaf et al.,
2016, |Assaf and Naumann) 2016} Assaf et al., 2017]; I derive simple yet novel enforcement
techniques that are within reach of the existing body of knowledge, but never explicitly pointed
out before [Assaf et all 2016, |Assaf and Naumann) 2016]; I derive more intricate enforcement
mechanisms, combining standard program analysis techniques from abstract interpretation, in
order to improve precision [Assaf] [2015] |Assaf and Naumann, 2016, |Assaf et al., 2017]. This work
also points out that the versatile specification tools of abstract interpretation, namely collecting
semantics and Galois connections, can be of equal importance for the specification of security
requirements, aka hyperproperties [Clarkson and Schneider; [2010].

Future work will build on this expertise and understanding, to streamline specifications
of security requirements by relying on abstract interpretation specifications in the form of
expressive semantics for hierarchies of computation models and Galois connections. These
specifications will open up the door for an exciting journey, tapping into the comprehensive
and systematic framework of calculational abstract interpretation to improve state-of-the-art
analyses by developing novel enforcement techniques, scaling to richer language constructs and
trading-off precision and performance.

2.1 Formal Requirements for Security

Hyperproperties are by now an established theory that sharply characterises security requirements.
They serve to formalise the intuition appearing in the literature that security requirements
are requirements relating and constraining several program executions, in contrast to standard
properties that constrain each individual program execution — this is partly why a computation
model at the level of sets of sets is needed to specify program analyses for security in abstract
interpretation, instead of the standard model at the level of sets.

Assaf et al. [2017] points out that hyperproperties can be formalised in terms of more general
computation models forming a hierarchy of semantics, and should not be limited to infinite
sequences of states; this remark is folklore in abstract interpretation literature, but deserves to be
advertised and disseminated in the security community, alongside the role of Galois connections
and collecting semantics in specifying security requirements. This should benefit the specification

Research Project

of formal security requirements by leveraging versatile and well-understood tools borrowed from
abstract interpretation. In addition, this should also formalise the notion that information flow
policies themselves can be organised into a hierarchy: formal security requirements against
strong attacker models (attackers who make more observations about a system) implies security
against weaker attacker models (attackers who make less observations about a system).

Future Work. Showcasing the benefits of the versatile tools offered by abstract interpretation,
I intend to revisit in the near term some well-known definitions of security requirements in
the information flow control literature with a particular emphasis on Galois connections and
collecting semantics. Typically, nondeterminism remains a subject of debate in information flow
literature; leveraging standard ways abstract interpretation deals with nondeterminism will lead
to a simple yet interesting definition of security requirements that ought to be compared with
existing qualitative and quantitative definitions. In addition, this work should also pave the
road for scaling to richer languages features by extending existing definitions of security and
accounting for additional attacker-observable vectors, e.g., interactive inputs, memory allocation
or low level details such as persistent memory in stack and registers and some side channels.

2.2 Static Analysis & Monitoring

Since the seminal work of Denning in the seventies, the field of information flow control have
achieved widespread interest, with many deep contributions pushing further our understanding,
techniques and reasoning tools. One pitfall remained: most analyses techniques in information
flow control depend too much on syntax and lack means of reasoning on the semantics of
programs. Many research endeavours try to reconcile information flow control mechanisms
and semantics reasoning by relying on abstract interpretation — a theory for approximating
program semantics. Yet, for a long time, the first expert comment I would get after mentioning
“information flow control” and “abstract interpretation” is “instrumentation”, as a way to signify
that prior work falls short of this endeavour and comfort my own dissatisfaction with prior
literature on the subject. My most recent work meets these expectations |Assaf and Naumann),
2016, Assaf et al., [2017).

Halfway through my Phd, I also developed interest in quantitative information flow in order
to estimate the amount of sensitive leakage a program may leak — in contrast to qualitative
information flow which aims at simply deciding whether a program leaks sensitive information.
There, the need for more semantics reasoning in security analyses was even more flagrant. Most
quantitative information flow analysis techniques relying on approximation resort to analyses
initially developed to ensure safety; this enables them to incorporate some semantics reasoning, at
the cost of either great imprecision, or not supporting a large set of program features. The initial
design of the cardinality analysis [Assaf], 2015| |Assaf et all 2016, Chapter 5] for quantitative
information flow targets improving precision for programs that allow attackers to control some
of the inputs. While these early works [Assaf, 2015| |Assaf et al. [2016] introduce the quantitative
analysis in a restricted setting for the two-point information flow lattice — program inputs are
labelled as either public or confidential, they both put under the spotlight the express intent
that the analysis should be at least as precise as state-of-the-art qualitative analyses. In abstract
interpretation, being at least as precise means that state-of-the-art qualitative analyses can be
derived as an abstraction of the quantitative cardinality analysis: Bingo! a formalisation of the
cardinality analysis entirely within the calculational framework of abstract interpretation leads
to a formalisation and a rationalisation of classical qualitative information flow analyses, relying
only on the semantics of programs and no instrumentation. Even in the restricted setting of the
two-point lattice, this is one step forward beyond existing work [Assaf et al., 2013bja]. Insights
developed while working out these ideas eventually lead to the rationalisation and improvement
of information flow monitors [Assaf and Naumann, 2016] for the two-point information flow

Research Project

lattice as well as the rationalisation and improvement of information flow static analyses for the
general case with arbitrary information flow lattices [Assaf et al., 2017].

Future Work. A few words may characterise my research agenda: understand, rationalise
and tmprove program analyses for information security — within the systematic framework of
calculational abstract interpretation.

My work on information flow monitors have yet to benefit from the recent and more general
framework that I use for the calculational derivation of static analyses for information flow
control. Ongoing work rationalises monitors for general security lattices. From there on, future
work in both static and dynamic information flow techniques will continue in lock-step. I
will aim at improving automated existing program analysis techniques and designing novel
ones to support richer language constructs, more precision, fine-tuned performances as well as
more intricate security policies. Setting this work into the framework of calculational abstract
interpretation will help making a difference and bringing information flow control analyses to a
level of maturity on a par with other program analysis fields. In the near term, my focus will be
on designing partitioning strategies for information flow analyses to improve precision. This will
help in extending the supported language constructs to nondeterminism, interactive input-output
behaviours, and more with a far better level of precision than existing work and building on my
previous work relying on analytic combinatorics to specify attackers’ observations. In addition,
I will investigate iteration strategies for fixpoint computation of hyperproperty abstractions
to fine-tune the trade-off between precision and performance; this is dependent on ongoing
foundational theoretical work addressing abstract interpretation for general hyperproperties,
including additional information flow security requirements which my work have not focused on
yet. In addition, my work on static and dynamic analyses can greatly benefit from decentralised
and hardware-assisted information flow tracking |[Dalton et al., 2007, |Abdul Wahab et al., 2016,
de Amorim et al., |2016].

Last but not least, this work will support and actually be guided by my long-term objectives
of addressing end-to-end information security in compilation toolchains by automated analyses.

2.3 More Perspectives

Modern architectures and toolchains for compilation are structured as pipelines of several
compilation passes bridging the gap between high level languages and machine code: several
passes throughout compilation, with each pass targeted at a specialised optimisation or code
transformation from an intermediate representation to another. This pipeline could be leveraged to
ensure automated end-to-end assurance of formal requirements, from source level code to machine
code. First, to put the stress on automated analyses for security, they should be put to the test
by ensuring that a security analysis that certifies a program in some intermediate language also
certifies optimised versions of this program in the same intermediate language. This is an ideal
and probably unattainable goal. However this ideal goal will serve as an experiment to guide
further developments and ensure analyses for security move away from syntactic reasoning to
include mostly semantics reasoning. Second, code transformations in the compilation pipeline
that introduce additional attacker-observable vectors — those translating from one intermediate
representation to another — should serve as checkpoints to plug in additional security analyses in
order to ensure the low level observable vectors they introduce do not break security guarantees
proven for higher level versions of the program. These two principles are dependent on tools for
specifying security requirements and pushing security analyses to perform reasoning on program
semantics far beyond the state-of-the-art; These tools are within reach in the framework of
calculational abstract interpretation for hyperproperties that I have been developing and gaining
expertise in, in order to specify and systematically derive security analyses.

The research project I am advocating is an original one thanks to novel multidisciplinary

Research Project

approaches it puts forward and exploits. My experience as a young and mature independent
researcher will prove valuable in offsetting the risks of this research endeavour; typically, this can
be evidenced by the great passion and laser-focus I tackled my research with, in order to address
eagerly sought-after and challenging problems in few, but solid and high-quality advances.

Publications

M. Assaf. From Qualitative to Quantitative Program Analysis : Permissive Enforcement of
Secure Information Flow. PhD thesis, Université de Rennes 1, May 2015. URL https:
//hal.inria.fr/tel-01184857. Best 2015 Phd award by the French Research Group on
Programming Languages and Software Engineering GDR GPL.

M. Assaf and D. Naumann. Calculational design of information flow monitors. In IJEEE Computer
Security Foundations Symposium, pages 210-224, 2016.

M. Assaf, J. Signoles, F. Tronel, and E. Totel. Moniteur hybride de flux d’information pour
un langage supportant des pointeurs. In SARSSI - 8¢me Conférence sur la Sécurité des
Architectures Réseaux et des Systéemes d’Information, 2013a. URL http://hal.inria.fr/
hal-00909293. Best student paper award.

M. Assaf, J. Signoles, F. Tronel, and E. Totel. Program transformation for non-interference
verification on programs with pointers. In Security and Privacy Protection in Information
Processing Systems, pages 231-244. 2013b. Best student paper award.

M. Assaf, J. Signoles, E. Totel, and F. Tronel. The cardinal abstraction for quantitative
information flow. In Workshop on Foundations of Computer Security (FCS), June 2016.
https://hal.inria.fr/hal-01334604.

M. Assaf, D. Naumann, J. Signoles, E. Totel, and F. Tronel. Hypercollecting semantics and
its application to static analysis of information flow. In ACM Symposium on Principles of
Programming Languages, Jan. 2017. URL https://arxiv.org/abs/1608.01654.

References

M. Abdul Wahab, P. Cotret, M. Nasr Allah, G. Hiet, V. Lapotre, and G. Gogniat. Towards a
hardware-assisted information flow tracking ecosystem for arm processors. In 26th International
Conference on Field-Programmable Logic and Applications (FPL 2016), Aug. 2016. URL
https://hal.archives-ouvertes.fr/hal-01337579.

S. Blazy, V. Laporte, and D. Pichardie. An abstract memory functor for verified ¢ static analyzers.
In International Conference on Functional Programming, page 14, 2016.

S. Boldo, C. Lelay, and G. Melquiond. Coquelicot: A user-friendly library of real analysis for
Coq. Mathematics in Computer Science, 9(1):41-62, 2015.

D. Cachera and D. Pichardie. A certified denotational abstract interpreter. In Interactive
Theorem Proving (ITP), pages 9-24, 2010.

M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer Security, 18(6):
1157-1210, 2010.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In ACM Symposium on Principles of
Programming Languages, pages 238-252, 1977.

https://hal.inria.fr/tel-01184857
https://hal.inria.fr/tel-01184857
http://hal.inria.fr/hal-00909293
http://hal.inria.fr/hal-00909293
https://hal.inria.fr/hal-01334604
https://arxiv.org/abs/1608.01654
https://hal.archives-ouvertes.fr/hal-01337579

Research Project

P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comport-
ment analysis generalizing strictness, termination, projection and per analysis of functional
languages). In International Conference on Computer Languages (ICCL), pages 95-112, 1994.

M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible information flow architecture for
software security. In Proceedings of the 84th Annual International Symposium on Computer
Architecture ISCA’07, pages 482-493, 2007.

D. Darais and D. V. Horn. Constructive galois connections: Taming the galois connection
framework for mechanized metatheory. In International Conference on Functional Programming
(ICFP), 2016.

A. A. de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie, B. C. Pierce,
R. Pollack, and A. Tolmach. A verified information-flow architecture. Journal of Computer
Security, 24(6):689-734, 2016.

D. E. Denning. A lattice model of secure information flow. Communications of ACM, 19(5):
236-243, 1976.

D. E. R. Denning and P. J. Denning. Certification of programs for secure information flow.
Communications of ACM, 20(7):504-513, 1977.

P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, 2009.

J. Goubault-Larrecq and J.-P. Lachance. On the complexity of monitoring orchids signatures.
In International Conference on Runtime Verification, pages 169-184, 2016.

J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-verified C static
analyzer. In ACM Symposium on Principles of Programming Languages, pages 247-259, 2015.

	Research Project
	Systematic Design Techniques
	Abstract Interpretation
	Future Work

	Analytic Combinatorics
	Future Work

	More Perspectives

	Information Security
	Formal Requirements for Security
	Future Work

	Static Analysis & Monitoring
	Future Work

	More Perspectives

